Geology

Core Ideas/Crosscutting Concepts:

The Beginning

Earths place in the universe

History Ptolemy Copernicus Brahe Keplers Laws

Origin of the Solar System

Protosun Protoplanets

Main Sequence Sun

Earth and Moon
Planetary differentiation
Convection currents
Formation of the Moon
Moons orbit
Phases of the Moon
Moon, Sun and tides

Stars and the elements Star life cycle Formation of elements

Meteorites
Origin of the universe

Static universe

Expanding universe Doppler Effect

Age of the universe

The Big Bang

Physical Geology

Earth's History

Principles to determine relative age

Learning Targets:

Physical Geology

Earth's Resources

Energy resources

Renewable and nonrenewable energy sources and efficiency

Core Ideas/Crosscutting Concepts:

Physical Geology

The geologic rock record

Relative and absolute age

Principles to determine relative age

Absolute age

Combining relative and absolute age data

The geologic time scale

The Geological Time Scale

James Hutton

Radiometric dating Half lives Decay curves

Relative dating
Superposition
Cross cutting
Inclusions
Faunal succession
Landscape development

Block diagrams

Geological Time Scale Pre-Cambrian Paleozoic Mesozoic

Cenozoic

Mapping & Remote Sensing

Topographic maps

Geological maps

Cross sections

Aerial photos

Remote sensing

LandSat

Learning Targets:

Physical Geology

The geologic rock record

Relative and absolute age

Principles to determine relative age

Absolute age

Combining relative and absolute age data

The geologic time scale

Core Ideas/Crosscutting Concepts:

Earths Structure

Seismic waves p-waves s-waves Surface waves Refraction

Earths Internal Structure Outer core Inner core Mantle Moho Lithosphere

Gravity & Gravity Anomalies

Isostacy

Earths internal heat

Earth's magnetic field Van Allen Belts Aurora Borealis Magnetic reversals

Plate Tectonics

History of Continental Drift Paleomagnetism Fossil Assemblages Minerals

Tectonic Cycle

Tectonic plates
Plates through time
Plate boundaries
Plate margins
Hot spots

Earthquakes Seismogram Seismograph Travel time

Richter Scale Mercalli Scale

Environmental impacts

Structural deformation Tensional Compressional Lateral slip Joints Faults Folds Domes & basins

Orogeny
Sea level changes
Transgressions & regressions
Unconformities
Geological cross sections
Learning Targets:
Physical Geology Plate Tectonics
Internal Earth
Seismic waves
S and P waves
Velocities, reflection, refraction of waves
Structure of Earth
Asthenosphere
Lithosphere
Mohorovicic boundary (Moho)
Composition of each of the layers of Earth
Gravity, magnetism and isostasy
Thermal energy (geothermal gradient and heat flow)
Historical review
Paleomagnetism and magnetic anomalies
Paleoclimatology
Plate motion

Causes and evidence of plate motion

Measuring plate motion

Characteristics of oceanic and continental plates

Relationship of plate movement and geologic events and features

Mantle plumes

Core Ideas/Crosscutting Concepts:

Mineralogy

Atomic structure

Periodic table

Bonding

Ionic

Covalent

Metallic

States of matter

Nature of minerals

Structure of minerals

Composition of minerals

Physical properties Identification of minerals Classification of minerals

Igneous Processes Rock Cycle

Igneous processes

Magma chemistry Bowens Reaction Series Magma composition Gases

Distribution of igneous rocks
Texture
Types of igneous rocks Extrusive/Intrusive
How magmas are different
Magma and plate tectonics
Volcanic eruptions
Gemstones: Diamonds
Building materials
Learning Targets:
Physical Geology 1 Minerals
Atoms and elements
Chemical bonding (ionic, covalent, metallic)
Crystallinity (crystal structure)
Criteria of a mineral (crystalline solid, occurs in nature, inorganic, defined chemical composition)
Properties of minerals (hardness, luster, cleavage, streak, crystal shape. fluorescence, flammability, density/specific gravity, malleability)
Igneous, Metamorphic and Sedimentary Rocks
Igneous
Mafic and felsic rocks and minerals
Intrusive (igneous structures: dikes, sills, batholiths, pegmatites)
Earth's interior (inner core, outer core, lower mantle, upper mantle, Mohorovicic discontinuity, crust)

Extrusive (volcanic activity, volcanoes: cinder cones, composite, shield)

Bowen's Reaction Series (continuous and discontinuous branches)

Core Ideas/Crosscutting Concepts:

Sedimentary Processes

Origin of sedimentary rocks

Types of sedimentary rocks

Clastics

Evaporites

Biological

Stratification

Cross bedding

Graded bedding

Surface features

Processes

Weathering

Transport

Deposition

Compaction

Learning Targets:

Physical Geology

Sedimentary

The ocean

Division of sedimentary rocks and minerals (chemical, clastic/physical, organic)

Depositional environments

Streams (channels, streambeds, floodplains, cross-bedding, alluvial fans, deltas)

Transgressing and regressing sea levels

Core Ideas/Crosscutting Concepts:

Metamorphic Processes Processes

Temperature Pressure Chemistry Distribution

Sources of heat Regional Contact

Chemically active fluids

Conditions Low grade High grade

Hydrothermal alterations

Texture Foliated Non-foliated

Regional metamorphism

Contact metamorphism

Atmosphere & Climate Layers of atmosphere

Atmosphere Barometric pressure Water vapor

Energy and motion

Air pollution

Water Movement of water Water supply

Oceans
Patterns of movement

Composition
Thermal structure
Density
Bottom profile
Currents
Currents over time
Upwelling

Waves

Climate Climate zones Climate change

Learning Targets:

Physical Geology

Metamorphic

Pressure, stress, temperature and compressional forces

Foliated (regional), non-foliated (contact)

Parent rock and degrees of metamorphism

Metamorphic zones (where metamorphic rocks are found)

Core Ideas/Crosscutting Concepts:

Physical Geology

Glacial Geology

Glaciers and glaciation

Evidence of past glaciers (including features formed through erosion or deposition)

Glacial deposition and erosion (including features formed through erosion or deposition)

Data from ice cores

Historical changes (glacial ages, amounts, locations, particulate matter, correlation to fossil evidence)

Evidence of climate changes throughout Earth's history

Glacial distribution and causes of glaciation

Types of glaciers – continental (ice sheets, ice caps), alpine/valley (piedmont, valley, cirque, ice caps)

Glacial structure, formation and movement

Depositional Environments I

Clastics vs. carbonates

Aeolian

Migration & transport Types

Alluvial fans

Lacustrine

Evaporates

Marine Non marine Salt domes Playa Sabkhas

Fluvial

Braided & meandering Levees & floodplains Cutbanks & point bars

Groundwater

Unconfined Confined Karst Geysers & hot springs

Glacial

Valley
Piedmont
Continental
Flow
Deposits
Pleistocene glaciers
Isostatic rebound
Sea level change

Depositional Environments II

Deltas

Distributary Crevasse splays Wave, fluvial, tidal impacts Bedforms

Shoreline

Longshore currents Beaches & barrier islands

Shallow marine

Carbonate platforms Bahamas Sabhkas Reefs

Coral reefs

Geometry Types Changes through time

Deep marine

Planktonic oozes Turbidites Bouma cycle

Deep sea fans

Learning Targets:

Physical Geology

Pressure, stress, temperature and compressional forces

Foliated (regional), non-foliated (contact)

Parent rock and degrees of metamorphism

Metamorphic zones (where metamorphic rocks are found)

Division of sedimentary rocks and minerals (chemical, clastic/physical, organic)

Depositional environments

Transgressing and regressing sea levels

Core Ideas/Crosscutting Concepts:

Geomorphology Weathering

Weathering

Physical

Chemical

Biological

Weathering & climate

Soils

Factors of formation

Profiles

Texture & structure

Classification

Mass movement

Soil creep

Landslides

Flows

Slumps

Falls

Causes

Cincinnati issues

Landforms

Historical Geology: Pre-Cambrian and Paleozoic

Pre-Cambrian divisions

Pre-Cambrian climate

Snowball Earth

Fossil preservation

Pre-Cambrian fossil record

Cambrian radiation

Ordovician Period

Mass extinction

Silurian Period

Devonian Period Mass extinction

Mississippian Period

Pennsylvanian Period

Permian Period Mass extinction

Learning Targets:

Physical Geology

Soil and sediment

Desertification

Mass wasting and erosion

Sediment contamination

Core Ideas/Crosscutting Concepts:

Historical Geology: Mesozoic and Cenozoic

Mesozoic

Triassic

Mass extinction

Jurassic

Cretaceous

Cenozoic

Tertiary

Paleocene

Eocene

Oligocene

Miocene

Pliocene

Quaternary

Pleistocene

Holocene

Learning Targets:

Physical Geology

The geologic time scale

Comprehending geologic time

Climate changes evident through the rock record

Fossil record

Soil and sediment

Desertification

Mass wasting and erosion

Sediment contamination

Core Ideas/Crosscutting Concepts:

Resources: Renewable and Non-Renewable

Non-renewable

Resource depletion curve Reserves vs. resources

Oil & Natural Gas

Initial discovery

Origin

Source rock

Reservoir rock

Trap

Structural traps

Stratigraphic traps

Fracking

Resources

Distribution

Mapping, seismic

Wireline surveys

Coal

Origin

Sequence

Distribution

Mining methods

Pollution

Uranium

Roll fronts

Recovery

Reserves

Minerals

Examples

Renewable

Biomass

Sources

Potential

Solar

Passive

Active

Low temperature

High temperature

Photovoltaic

Geothermal

Low temperature

High temperature

Hydropower

Dams

Tidal

Wave action

Wind

Resources

Hydrogen

Fuel cell

Sources

Learning Targets:

Physical Geology

Earth's Resources

Energy resources

Renewable and nonrenewable energy sources and efficiency

Physical Geology

Earth's Resources

Energy resources

Renewable and nonrenewable energy sources and efficiency

Physical Geology

Earth's Resources

Energy resources

Renewable and nonrenewable energy sources and efficiency

Core Ideas/Crosscutting Concepts:

Renewable and Non- Renewable Resources (continued) Main Concepts

1. Future Energy Supply

Learning Targets:

Physical Geology

Earth's Resources

Energy resources

Renewable and nonrenewable energy sources and efficiency